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Abstract Marine hydrodynamics is characterised by both weak nonlinearities, as seen for example in
drift forces, and strong nonlinearities, as seen for example in wave breaking. In many cases their relative
importance is still a controversial matter. The phenomenon of particle escape, seen in linear theory, appears
to offer a guide to when strongly nonlinear effects will start to become important, and what will happen
when they do.

In the case of the “ringing” of vertical cylinders in steep waves, particle escape is shown to correspond
approximately to local wave breaking, which leads to the cavitation responsible for “ringing”. Another
example is rogue waves, where recent results from weakly nonlinear theory are disappointing, and also fail
to explain the rogue waves seen in relatively shallow water, as in the data from the Draupner and Gorm
platforms. Recent laboratory experiments, too, show wave crests continuing to grow in height after all
frequency components have come into phase, which is inconsistent with weakly nonlinear theory. Particle
escape, which is more frequent in shallow water, offers a simple alternative explanation for these observa-
tions, as well as for the violent motion at the wave crests, which often confuses rogue-wave data. Extreme
wave crests have long been known to be strongly nonlinear, so it appears possible that rogue waves are
primarily a strongly nonlinear phenomenon.

Fully nonlinear computations of two interacting regular waves are presented, to explore further the
connection between particle escape and wave breaking. They are combined with Monte-Carlo simulations
of particle escape in hurricane conditions, and the very few measurements of large breaking waves during
hurricanes. It is concluded that large breaking waves will have occurred about once per hour, and once per
100 h, respectively, in the recent hurricanes LILI and IVAN. These findings call into question the use of
non-breaking wave models in the design codes for fixed steel offshore structures.
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1 Introduction

It is a great pleasure to contribute to this Volume in honour of Nick Newman’s 70th birthday. I have known
him personally for 15 years, and twice that time by reputation. I can certainly concur with John Grue’s
observation in his introduction to the Proceedings of the 20th IWWWFB [1], that Nick Newman has been
the world’s foremost expert in the field of marine hydrodynamics, for more than a generation. I would also
concur with Finn Gunnar Nielsen’s remark in the same introduction, that his personal qualities, especially
his kindness, and his respect and tolerance for all, has perhaps been equally important, as a lesson in the
way that the international research community should behave. His modest reply to his birthday speeches
at the 20th IWWWFB sufficiently illustrate this point. Nick said that we should not believe a word of the
praises just heaped upon him, and that he wished the Anglo-Saxons would show a greater appreciation
to the rest of the world, for being prepared to speak English at international meetings! This is a civilised
voice indeed, reminiscent of Henry Thoreau (an earlier voice from Massachusetts), and Mark Twain.

I would like to use this opportunity to address what I believe to be one of the fundamental characteristics
of marine hydrodynamics, and one of the main reasons for its continuing vitality. This is that it has two
types of nonlinearity: weak and strong. The importance of this distinction was first highlighted, to my
knowledge, by M.S. Longuet-Higgins. Weak nonlinearity is seen for example in wave-drift forces, which
are the nonlinear effect whereby waves generate steady forces on floating bodies. Wave-drift forces are
typically proportional to the square of the wave height, and can be analysed with a perturbation scheme
(Stokes’ expansion), taken to second order in wave steepness, as of course in Newman’s approximation.
Strong nonlinearity is seen most obviously in wave breaking, and in related wave-impact effects. These
cannot be analysed by the Stokes perturbation scheme, as is conclusively shown by the fact that the water
surface overturns, and cannot therefore be described as a Fourier series.

I would like to deal with three examples where the relative importance of weak and strong nonlinearity
is not clear, and where the issue is still (or has recently been) controversial:

1. “Ringing” of vertical cylinders in steep waves. This is a transient high-frequency structural vibration,
discovered during the design of large concrete oil rigs in Norway in the 1990s. It is produced when steep
waves interact with an elastically mounted vertical cylinder, of diameter comparable with the wave
height, and natural period 10–30% of the wave period. Because the vibration can be in the region of the
3rd harmonic of the wave frequency, 3rd order weakly nonlinear theory was developed, with consider-
able skill, to analyse the problem. However, high-speed photography revealed that the phenomenon is
strongly nonlinear, and that the rapid loading cycle causing the “ringing” vibration is traceable to local
wave breaking around the cylinder, leading to cavitation behind it.

2. Rogue waves. Weakly nonlinear theory shows that regular waves are unstable, and degenerate into
wave groups. In the right circumstances, these groups can continue to self-focus into large isolated
waves, up to three times higher than the original regular waves. This has been widely suggested as
the explanation for rogue waves. Recent computations suggest that this type of self-focusing is not
statistically significant in irregular waves, however. I will discuss new evidence which points in the same
direction, and suggests that strong nonlinearities may better explain the observed anomalies in wave
data. This is a controversial view.

3. Wave breaking. Large-scale wave breaking is unusual in deep water, but is of great engineering impor-
tance when it does occur, because of the damage it can cause. The mechanism responsible for wave
breaking is unclear—again, it has long been suggested that the weakly nonlinear instabilities of regular
waves may be relevant, because they can ultimately lead to breaking. However, I will discuss a strongly
nonlinear explanation, which appears to be useful in making quantitative predictions of breaking
statistics. It also calls into question the widespread use of non-breaking wave models, in the design
codes for offshore structures. This is again a controversial view.
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Fig. 1 The upper graphs are successive positions of a sheet of particles initially on the zero-pressure surface, for two 1st
order waves of the same steepness ka = 0.18, one twice the length of the other. The lower graphs are the corresponding
conventionally defined surfaces (1.1). One wavelength of the longer wave (2π) is illustrated, and the vertical and horizontal
scales are the same. The bold line is the initial position, when the crest of the longer wave, and the trough of the shorter wave,
are both at π . Subsequent lines show the surface at successive time-steps equal to 5% of the time until the conventionally
defined crests coincide. The arrow shows where this crest coincidence occurs

In all three cases I will demonstrate that a useful indicator of when strongly nonlinear behaviour begins,
and what form it will take, is particle “escape”. This is a phenomenon seen for example when two first-order
regular waves interact, and is illustrated in Fig. 1, which shows two such waves of 2:1 length ratio.

If their amplitudes, wavenumbers and frequencies are a1, k1, ω1, and a2, k2, ω2, the surface elevation is
given by linear theory as:

a1 cos(k1x − ω1t) + a2 cos(k2x − ω2t), (1.1)

where x is horizontal position and t is time, and we are taking k1 = 1, k2 = 2, and equal wave steepnesses
of k1a1 = k2a2 = 0.18. At the bottom of Fig. 1 this surface is shown at successive times starting from when
the crests of the long wave coincide with the trough of the short wave, and continuing up to (and beyond)
the point where the crests of the two waves coincide.

The top of Fig. 1 shows the corresponding position of surface particles, which are tracked computation-
ally as they move in the linear velocity field, defined by the velocity potential ϕ given by
a1ω1

k1
ek1z sin(k1x − ω1t) + a2ω2

k2
ek2z sin(k2x − ω2t), (1.2)

where z is vertical position measured upwards from the still water level, and we are assuming deep water
so that ω2

1 = k1g and ω2
2 = k2g where g is the acceleration due to gravity.

The initial condition of the particles is that they are placed on the zero-pressure surface, where the
pressure p is defined by the exact pressure formula:

p = −ρgz − ρ
∂ϕ

∂t
− 1

2
ρ∇ϕ · ∇ϕ, (1.3)

where ρ is the water density, and the pressure datum p= 0 is atmospheric pressure. This initial surface can
be seen in Fig. 1 to be very similar to the conventional surface (1.1), the small difference being a measure of
the surface pressure error in linear theory. The particles thus define a surface which is a small improvement
on linear theory in this respect, but only initially.

As can be seen in Fig. 1, the sheet of particles overturns shortly after the crests of the two waves have
coincided, and then the particles involved move violently upwards. The reason for this behaviour is readily
seen from the simpler case of a regular wave, where we can make the flow steady by switching to a frame
of reference moving with the wave crests. The streamlines in this frame are shown in Fig. 2 below.

The free surface in linear theory is a sinusoidal approximation to whichever of these streamlines most
accurately satisfies the condition that the pressure (1.3) is zero. As waves of increasing steepness are
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Fig. 2 Streamlines in a
regular wave, according to
linear theory. The frame
of reference is moving
with the wave, so that the
flow is steady. Vertical
and horizontal scales are
the same, and the
horizontal axis covers one
wavelength

considered, it is an increasingly steep streamline. Eventually, the streamlines diverge from the wave crest.
This is because the orbital velocity of the particles, when seen in a fixed frame of reference, has exceeded
the speed of the wave. In the moving frame of Fig. 2, therefore, the velocity is not merely reduced in the
wave crest, but reversed. When the first diverging streamline is reached, the particles suddenly behave
in a completely different manner, moving violently upwards, with ever-increasing velocity—in fact, they
escape to infinity in finite time; see Appendix. Similar behaviour is seen at the top of Fig. 1, which we will
henceforward refer to as a particle escape. We will see in Sect. 3 that it is in practice a very well-defined
event, even in fully irregular waves.

A particle escape means that the kinematic boundary condition, that surface particles remain on the
surface, is no longer satisfied, even approximately, so that the errors in the linear theory, which the higher-
order terms in Stokes’ expansion are seeking to correct, are very large. See Stokes’ original paper [2], which
considers the kinematic error on the zero-pressure surface in a velocity field exactly like Fig. 2, obtained by
separation of variables and thus not restricted to z < 0. We might therefore expect that Stokes’ expansion
may diverge, and thus the weakly nonlinear theory be no longer valid. However, we can also readily see
from Fig. 2 that particle escape does not correspond exactly to the limit of validity of the weakly nonlinear
theory. This is because in this simple case of a regular wave, it is known [3] that the weakly nonlinear theory
continues to be valid (with appropriate choice of the expansion parameter) up to the limiting regular wave
with a 120-degree Stokes crest. This 120 degree crest is not seen in the dividing streamline in Fig. 2, which
instead forms a 90 degree crest.

Thus particle escape appears to be an indicator of the limit of validity of the weakly nonlinear theory,
but only an approximate one. In this paper, we will explore how useful it is in practice.

2 “Ringing” of vertical cylinders in steep waves

The phenomenon of “ringing” was discovered in Norway in the 1990s, during model tests on the very
large concrete oil rigs for the Heidrun and Draugen offshore oilfields. Bursts of high-frequency structural
vibration were seen, coinciding with the passage of steep, but not breaking, waves. The phenomenon was
unexpected (although as usual, earlier evidence of the phenomenon was soon discovered, in model test
reports dating back to the 1970s, and even in full-scale measurements), and required late design changes to
both rigs. Sophisticated computational techniques were rapidly developed to address the problem, nota-
bly an extension to 3rd order of the classical weakly nonlinear theory (i.e., Stokes’ expansion) of wave
diffraction around a vertical cylinder [4], and a simpler version of this theory [5] for the special case of
long wavelength relative to cylinder diameter. Both relied on the observation that the vibration was not
far from the 3rd harmonic of the wave frequency, suggesting that it may be a 3rd order weakly nonlinear
phenomenon.

However, careful model tests on vertical cylinders in these conditions showed [6] that there was a
“secondary loading cycle”, associated with violent motion of the water surface. In later experiments [7]
it was shown by high-speed photography that there is local breaking around the cylinder, leading to the
formation of a cavitation (or more strictly a ventilation) bubble behind it, which then collapses to give the
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Fig. 3 Laboratory observations (left column) and simulations (middle column) of the water surface, at intervals of 0.2 s,
around a cylinder of 10 cm diameter, in a wave of 0.8 s period. The simulations were obtained by following surface particles
moving in the velocity field defined by the MacCamy–Fuchs linear potential. The viewing angle of the simulations is shifted by
15o in yaw relative to that of the laboratory observations. The right column shows the corresponding water surface elevations
alongside the cylinder in the simulations (IV), the MacCamy–Fuchs linear free-surface position as conventionally defined
(III), and slender-body approximations to both (II and I, respectively). Measurements are shown as points

secondary loading cycle. There is no connection with the 3rd harmonic of the wave frequency—the natural
frequency of the cylinder can be set at much higher multiples of the wave frequency, and the “ringing”
phenomenon persists, with the vibration envelope changing to follow the shape of the secondary loading
cycle. It is a strongly nonlinear phenomenon, like wave breaking.

Figure 3, taken from more recent experiments [8], shows high-speed photographs of the water surface
during this secondary loading cycle, as observed during laboratory experiments, in the transient wave at
the start of a regular wave train. In the absence of the cylinder, this wave is well short of breaking, and
has a surface elevation time-history which is readily reproduced by linear theory, as the sum of just two
frequency components. The corresponding linear diffracted waves around the cylinder are the well-known
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McCamy–Fuchs combination of Bessel functions, see e.g. [9, p. 390]. As in Fig. 1, particles were followed in
this linear velocity field, starting from their position on the linear free surface at the null before the event
illustrated. The surface defined by the subsequent position of this sheet of particles is shown in the second
column of figures in Fig. 3, and the final column shows comparative measurements of the surface position
immediately adjacent to the cylinder.

The most striking result is that the breaking wave seen propagating around the cylinder between the
second and third images, is also seen in the particle-sheet simulations, despite the fact that they only use
linear theory. This local breaking is a strongly nonlinear phenomenon, leading to the cavitation behind the
cylinder seen in the third image, and the associated secondary loading cycle.

The behaviour of the surface particles moving in the linear velocity field, still short of particle escape, is
evidently a good guide to the onset of strongly nonlinear behaviour.

3 Rogue waves

The celebrated Benjamin–Feir instability of regular waves [10] is a weakly nonlinear effect (3rd order in
Stokes’ expansion) which has given rise to a whole branch of the theory of water waves, see e.g. [11]. This
has been further stimulated by the discovery of exactly equivalent effects in nonlinear optics. Following
Peregrine’s discovery [12] that an ultimate weakly nonlinear evolution of regular waves was into a single
wave about three times higher than the original regular wavetrain, it has been widely suggested (e.g. [13])
that weakly nonlinear theory might explain rogue waves, i.e., waves too big to be explained by Stokes 2nd
order theory.

However, recent developments have not lent support for this view. The latest computations [14] show
that the effect of this weakly nonlinear evolution on crest elevation statistics is negligible except when the
initial wave spectrum is unrealistically narrow, and even then it is not large (∼10% increase in extreme
crest elevation seen in 104 waves, compared with 2nd order theory). Also, in one of the best-documented
cases of a rogue wave, on the Draupner oil rig in 1995, where there was a wave-crest elevation of 1.55 times
the significant waveheight [15], it has been recently shown [16] that the water is too shallow for weakly
nonlinear spectral evolution. This is essentially because the spectral peak in that wave is at 0.0633 Hz (see
Fig. 5 below) which corresponds to kd = 1.307 in the Draupner depth of d = 70 m, whereas the Benjamin–
Feir instability requires a minimum kd of 1.363 [10]. This is even more so in the depth of 40 m at the Gorm
oil rig, where there is a much more extensive collection of published data [17], including rogue waves with
wave-crest elevations up to 2.07 times the significant waveheight.

Strongly nonlinear features, apart from breaking, have long been recognised in steep waves; see Fig. 4,
taken from [7], which shows the phase speeds of the frequency components of a focused wave, as mea-
sured in the laboratory from the phase difference detected by a pair of closely spaced wave probes. The
mechanically generated waves, produced by the wave-maker, are in the range 0.511–1.244 Hz. All the
other components arise naturally through nonlinear interactions. Well before focus, when the waves are
still small, the phase speeds of these components can be seen (top of Fig. 4) to be as predicted by weakly
nonlinear theory, i.e., at multiples and submultiples of the speed C1 of a free-running linear wave. But
close to focus, the high-frequency components all lock onto the same speed, so that for a short time the
wave resembles a large regular wave. This is a strongly nonlinear phenomenon, first described in [18], and
confirmed by many subsequent workers; see papers cited in [7].

Of particular interest in the context of rogue waves is the observation [19, Fig. 3] that if the phases
of the mechanically generated waves are carefully adjusted to bring all these components exactly into
phase at focus (compensating for the pronounced defocusing caused by nonlinear changes in phase speed,
which are of course another well-known weakly nonlinear effect [20]), then all the naturally occurring
wave components come into phase too, apart from the low-frequency set-down, which is in anti-phase, as
predicted by weakly nonlinear theory. And yet the wave-crest elevation may be seen to continue to grow
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Fig. 4 Measured phase
speeds in a focused wave,
near focus (below) and
well before it (above). x is
position in the direction
of wave travel, from the
focus point. Mean
wavelength is about 1.7 m
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Fig. 5 Measured wave spectrum at the time of the Draupner rogue wave, obtained from the 20-min record containing the
rogue wave. The peak is at 0.0633 Hz. The significant waveheight, defined at 4 times the standard deviation of the record, was
11.92 m

thereafter [19, Fig. 6a], by approximately 10% in the case studied there, where the wave was not steep
enough to break. The growth is presumably caused [19, after Fig. 3] because the set-down ceases to be in
anti-phase. A similar phase change of the set-down is revealed in [15] in the Draupner rogue wave, where
its inconsistency with weakly nonlinear theory is highlighted.

This growth in crest elevation is reminiscent of the behaviour seen in Fig. 1, in which the elevation of the
crest particles grows without limit. In that case the dynamic boundary condition of zero pressure is being
progressively violated, with the surface pressure becoming more and more negative, as if the surface were
being sucked up. When the suction pressure is removed, it is plausible that the effect may remain, to some
extent, and this is confirmed by the exact computations in the next section (see Table 2). It is therefore
pertinent to enquire whether the particle escape seen in Fig. 1 occurs in the wave spectrum at the time of
the Draupner rogue wave. This spectrum is given in Fig. 5 above, taken from [15].
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Fig. 6 Trajectory of a particle initially on the zero-pressure surface, and moving thereafter in the velocity field (3.1), with the
Draupner wave spectrum of Fig. 5, truncated to give a maximum-to-minimum frequency ratio R of 2.00. The number N of
spectral lines was 50. The vertical and horizontal scales are both in metres, and the particle escapes after about 20 min

It is normal practice in rogue-wave predictions (e.g. [13,14]) to ignore the high-frequency tail of the spec-
trum. In Fig. 5, the natural choice for such a truncation frequency is 0.094 Hz, where there is a pronounced
drop in spectral density. There is also practically no energy below 0.047 Hz; in this way the spectrum is
restricted to a convenient maximum-to-minimum frequency ratio of exactly 2. This truncation reduces the
significant waveheight by 10%; the lost waveheight was restored by scaling up the truncated spectrum so
that the significant waveheight was 12 m.

The linear velocity potential was then defined in the usual way as the sum of N components:
∑

j

ωj

kj

√
2S(ωj)δω

cosh kj(z + d)

sinh kjd
sin(kjx − ωjt + �j), (3.1)

where S(ω) is the wave spectrum of Fig. 5 truncated as just described, and �j are random phase angles.
The infinite-depth form (1.2) of the velocity potential is now replaced by the finite-depth form, with the
wavenumbers kj given by kjg tanh(kjd) = ω2

j . The N frequencies ωj were chosen so that the corresponding
wavenumbers kj were equally spaced.

The occurrence of particle escapes can be investigated very simply, namely by tracking a single particle
started at the zero-pressure surface as in Fig. 1 (a refinement is to wait until this zero-pressure surface
crosses zero, before starting), and then moving in the flow field defined by (3.1). A typical result obtained
in this way is shown in Fig. 6 above. The orbital motion of the particle is evident, as well as its steady Stokes
drift in the downwave direction. After a number of wave cycles, however, the particle escapes violently
upwards. The motion is so violent that it produces a numerical overflow—the particle appears to escape to
infinity in finite time, as in the regular-wave case, described in the Appendix. Accordingly, the particle is
“trapped” by setting the velocity to zero after it reaches an elevation of 50 m. The statistical results below
are not visibly altered if this elevation is increased to 200 m.

However, there are cases of the particles reaching a large elevation but not escaping; one such can be
seen in Fig. 6, where the particle reaches an elevation of nearly 20 m. In 300 repeats of the simulation
shown there, each 1 h long, but with other choices of the random phase angles �j there was only a single
case of a particle escape, which is the one illustrated. In these 300 h, there were three cases where the
elevation reached 30 m without escaping, but none where it exceeded 35 m. It is arguable that if the particle
elevation exceeds 30 m, then the kinematic errors in linear theory are so large that Stokes’ expansion is
likely to diverge and give strongly nonlinear behaviour. This could well be true (as in Fig. 3, where strongly
nonlinear behaviour is occurring before particle escape) but the convenient datum is obviously particle
escape, because it corresponds to the most extreme events, which are the ones of interest in the context of
rogue waves.

To explore the frequency of particle escape, more extensive simulations are required. As can be seen
in Fig. 6, there is remarkably little drift of the particles in a vertical direction, in contrast to their large
horizontal drift. This is a very convenient property, and arises because a whole sheet of surface particles
cannot drift vertically in potential flow, unless there is loss of fluid volume under it, which in our case is
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Fig. 7 Waiting-times until a particle escape, from batches of 7,500 simulations, plotted against − log{1 − (n − 0.5)/7, 500},
where n is the position out of 7,500 when sorted into ascending order. The spectrum was that shown in Fig. 5, truncated to a
maximum frequency ratio of 2, and scaled to a significant waveheight of 12 m

prevented by the seabed (or the stationary deep water, in the infinite-depth case). Beyond 100 h, however,
a slight downward drift can be clearly seen in long simulations, which biases the escapes towards the earlier
part of the run. This may be simply a numerical limitation, or a slight loss of fluid volume caused by escapes
elsewhere. It is immaterial in practice, because a few long simulations are no quicker than many shorter
ones. Accordingly, the simulation length was chosen as 3.33 h, so that a batch of 300 simulations corre-
sponded to 1,000 h. Twenty-five such batches were then performed, giving 25,000 h or about 107 waves.
This is easily comparable with other recent work on rogue waves; for example, reference [14] considers
104 waves over durations up to 100 wave periods.

The 25,000 h were made up of 25×300 = 7,500 simulations, in the great majority of which there was no
particle escape. When one occurred, however, the waiting-time before the escape occurred, measured from
the beginning of the simulation, was recorded. If the escapes are occurring at random, these waiting-times
should fit the exponential distribution for the waiting-time in a Poisson process. We can therefore compare
with this distribution, using a Q–Q plot; see e.g. [21, Sect. 10.2.3]. The waiting-times before particle “escape”
are first sorted into ascending order, and then the nth waiting time is plotted against the corresponding
nth 7,500-quantile of the exponential distribution. If the mean waiting time is T, then the exponential
distribution gives the cumulative distribution function for the waiting time t as:

1 − e− t
T . (3.2)

Thus the nth 7,500-quantile tn is given by

1 − e− tn
T = n − 0.5

7, 500
, i.e., tn = T

{
− log

(
1 − n − 0.5

7, 500

)}
. (3.3)

We can therefore plot our sorted waiting-times against − log{1 − (n − 0.5)/7, 500}. If they follow an expo-
nential distribution, the result should be a straight line of slope equal to the mean waiting-time T. Figure 7
shows these plots, where the number of spectral lines N is taken as 50, 100 and 200, to check for numerical
convergence. To reveal also the importance of the water depth of 70 m at Draupner, all the simulations
were repeated with the infinite-depth form (1.2) of the velocity potential (3.1), and these results are given
as well in Fig. 7.
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Fig. 8 Interaction between waves generated by a boat, and local wind waves of approximately half the length. Note violent
upward motion of particles in the crest, shown circled. Taken by the author from the Dale Princess (approx 15 m long), off
Skomer Island, Pembrokeshire, UK. The wind is blowing off the shore, in the direction that the boat is travelling, so that the
wind-generated waves are at approximately 45 degrees to the direction of the ship waves

It can immediately be seen that the finite depth of 70 m at Draupner is very significant, increasing the
frequency of particle escapes by almost an order of magnitude. This is ofcourse to be expected, from Fig. 2,
since in finite depth the horizontal particle velocities are increased, while the phase velocity is reduced. It
can also be seen that the number Nof spectral lines is important; however, with the 70 m depth, the results
appear to have converged at N= 200. There is then a good fit to a straight line, implying escapes occurring
at random, at a frequency of one every 3.2/0.012 = 270 h.

This is consistent with the discovery of the Draupner rogue wave as a rare event among some years of
wave data, with presumably hundreds of hours of storm conditions. It is also consistent with the greater
numbers of more extreme events (up to crest elevations of 2.07 times significant waveheight [17], as already
noted) seen in the Gorm data, where the water depth was only 40 m. It suggests that the phenomenon
of rogue waves may be largely explained as ordinary linear wave focusing, with the strongly nonlinear
consequences suggested by particle escape. These strongly nonlinear consequences are quick-acting, in
contrast to the slow weakly nonlinear evolution of extreme waves discussed at the start of this section,
so there should be no need for very long wave flumes to see them. A short wave flume, provided it has
an efficient beach and an absorbing wavemaker so that it can be run for long periods without reflections
building up, should be sufficient. It is merely necessary to repeat the numerical experiment of Fig. 7 above.
At a scale factor of 100:1, the 25,000 h considered there would take 2,500 h or about 3 months, which is just
feasible. And the steeper seastates considered in the next section would not need this long. See Fig. 13,
which suggests that 1,000 h full-scale, or approximately 100 h model scale, would be sufficient. It would also
be possible to include wind in the experiments, because it is well-known (from the surfing and kayaking
fraternity, and also in the technical literature [22, p. 389]) to increase crest elevations when it blows in the
opposite direction to the waves.

One feature of rogue waves that might be confirmed in this way, with the aid of high-speed photography,
is that the crest can sometimes be thrown violently upwards in a jet, in the manner suggested in Fig. 1. The
phenomenon is readily observed at sea in the locally extreme conditions produced when wind waves are
augmented by ship waves; see Fig. 8 above. Similar observations of violent jets at wave crests have recently
been made in the laboratory, in focused waves [23].

This would neatly explain a recurrent theme of the rogue-wave literature, which is that many of the
physical measurements of crest elevations are disputed. The data from the Gorm field [17] cited above, for
example, has been analysed elsewhere [24] with very different conclusions—the extreme crest elevations
given in [24] are only about 1.6 times the significant waveheight, rather than 2.07 times it. This problem has
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Fig. 9 Large-scale breaking wave during hurricane CAMILLE, as recorded by a fixed wave staff. These measurements are
published by the Ship Hydrodynamics Directorate of the U.S. Naval Surface Warfare Center, Carderock Division. Details
are in [29]. The data shown, which has a sampling rate of 10 Hz, is taken directly from the Camille_1713C file, preserving the
time recording used there, viz. seconds after 1300 h on 17th August 1969. The mean water level over the 1 h duration of the
record is −0.990 m

been highlighted in the literature [25] where the problem is described as “spurious crests due to spray”.
A noteworthy recent example is the freak wave recorded on the North Alwyn platform [26, Fig. 1] which
had a crest elevation 2.35 times the significant waveheight (which was 5.93 m, based on the standard devi-
ation of the record), but the crest appears as a pronounced “spike” in the time-history, capable of various
interpretations.

4 Large-scale wave breaking

After extreme crest elevations, the next most important wave parameter to offshore structures is the
likelihood of large-scale wave breaking. Such events are not recorded by wave buoys (which in practice
smooth out wave breaking, for a variety of reasons), but are seen in measurements from fixed gauges. A
well-known published example is the large breaking wave seen during hurricane CAMILLE, which has
been highlighted by several authors, e.g. [27, Fig. 8.1], [28, Fig. 8], and is reproduced in Fig. 9 above.

On the front face of this wave, the rate of increase in surface elevation is sustained at over 15 m/s, for
nearly half the crest elevation. This is about the same as its phase speed, implying that the front face has
a slope of 45 degrees, over a similar distance. Since the pressure is zero at the water surface (the dynamic
free-surface condition), the pressure gradient, which is the vector sum of particle acceleration and g, must
be normal to the water surface. Thus, when the surface slope is 45 degrees, the particle acceleration must
be about g, which is much greater than the particle acceleration in a non-breaking wave, and will produce
much larger wave loads, especially on large-diameter structural members.

What is required from an engineering point of view is some method of predicting the likelihood of a
large breaking wave of this type, based on the readily available wave data, which is the wave spectrum
as measured by wave buoys. To take a topical example, the spectra of all recent hurricanes in the Gulf of
Mexico are measured by wave buoys operated by the US National Oceanic and Atmospheric Admin-
istration, and put into the public domain. The two most recent important hurricanes featured there are
IVAN and LILI, whose spectra are shown in Fig. 10 below, together with that of hurricane CAMILLE. An
important parameter in these spectra is the significant steepness, i.e., the significant waveheight divided by
the wavelength of the peak frequency of the spectrum (it is not to be confused with significant acceleration,
i.e., twice the root-mean-square acceleration. This is very poorly defined, as explained below). This comes
to 0.037, 0.043 and 0.041, respectively, for IVAN, LILI and CAMILLE. These values are considerably
higher than average seastates—the well-known Pierson–Moskowitz spectrum, for example, has a signifi-
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Fig. 10 Measured wave spectra in hurricanes IVAN, LILI and CAMILLE. In the first two cases the spectra are taken from
the U.S. National Data Buoy Center website www.ndbc.noaa.gov, for Buoy Station 42040 at 00.00 h on 16th September 2004,
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shown is obtained from an FFT of the Camille_1713C file (see Fig. 9) covering approximately the period from 15.00 h to
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depth is 100 m

cant steepness of 0.025. They are, however, not exclusively associated with tropical hurricanes—pooled
data from 1973 to 2001 from the North Sea shows [14, Fig. 2] a maximum significant steepness of about
0.055.

The present state-of-the-art in predicting wave breaking is reviewed in [22] where it is explained that the
frequency of breaking is believed to be related to the frequency of exceedance (based on a linear prediction
of the root-mean-square acceleration, and the Rayleigh distribution) of a given threshold of vertical par-
ticle acceleration. It is explained that the value of this threshold is not well understood, and that values of
0.5g (i.e., the particle acceleration in the 120 degree Stokes crest) and 0.388g (i.e., the particle acceleration
in the most energetic regular wave) have been proposed; see [30,31], respectively. The frequency of wave
breaking calculated in this way is shown in Table 1 below, for the three spectra of Fig. 10.

It can be seen that there is a very large variation in the results, depending on the way that the wave
spectrum is truncated during the calculation of the root-mean-square vertical acceleration. This calculation
uses the transfer function between wave elevation and vertical acceleration, which is simply ω2 irrespective
of the water depth, so as to give the root-mean-square acceleration as the square root of:
∫ ∞

0

[
ω2

]2
S(ω)dω. (4.1)

It is well known that this integral is very sensitive to the high-frequency tail of S(ω), because of the ω4

weighting. In particular, standard semi-empirical spectra such as the Pierson–Moskowitz spectrum have a
ω−5 high-frequency tail, so the integral (4.1) does not converge as the upper limit tends to ∞, but gives a
result which can be made as large as we please, by choosing a sufficiently large limit. Hence the very large
variations with truncation frequency seen in Table 1. These can be interpreted as showing the length-scale
of the breaking: the lower the truncation frequency, the larger the scale of the breaking being predicted.
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Table 1 Average number of waves needed to exceed given acceleration thresholds once, from the Rayleigh distribution and
the root-mean-square acceleration given by (4.1)

Whole spectrum up
to recorded limit
of 0.4 Hz (= 10 m
wavelength)

Spectrum truncated to
limit bandwidth to 3:1
frequency ratio

Spectrum truncated to
limit bandwidth to 2:1
frequency ratio

0.388g 0.5g 0.388g 0.5g 0.388g 0.5g

IVAN 21 154 2,050 316,000 696,000 5.04 × 109

LILI 7 25 82 1,500 1,660 223,000
CAMILLE 5 16 157 4,410 15,600 9,180,000

However, given this inconclusive evidence, some people have argued that large-scale breaking does not
occur at all on deep water [22, p. 373].

It was argued by the author [32] that particle escape gave a simple insight into wave breaking, because of
the overturning of the surface seen in Fig. 1, which resembles breaking. This explanation of wave breaking
was contrasted by the author [32, Sect. 6] with the alternative explanation that breaking is caused by an
instability. The crest instability described by Longuet-Higgins and Tanaka [33] is the most relevant to
breaking. Like the Benjamin–Feir instability described in the previous section, it develops from a regular
wavetrain, and is weakly nonlinear (being a small perturbation from a weakly nonlinear wave), but it is a
superharmonic rather than a subharmonic instability (i.e., all wave crests are affected equally, rather than
some growing at the expense of others). However, it only occurs in regular waves with crests close to the
120 degree limiting form (waves with ka > 0.429, see [34, p. 33]), its scale is small (only a few percent of
the crest height is affected [34, Fig. 9]), and its growth rate is slow (about 1 wave period before breaking
[34, Fig. 9]). In large-scale wave breaking the 120 degree limiting wave form is by-passed—indeed the
extent to which it is by-passed is a measure of the total dimensions of the overturning [35, p. 378].

The explanation of particle escape applies to large-scale breaking, and will now be explored quantita-
tively. The problem of wave breaking is evidently a longstanding and difficult one, yet of great engineering
importance. Any additional evidence of large-scale breaking is therefore of interest, however modest.

We can first repeat the particle-sheet computations at the top of Fig. 1 with an exact fully nonlinear
computer program, in which the velocity potential is continuously changed to keep the pressure at the
surface particles zero. A particularly well-developed program [36,37], based on the boundary-integral
method introduced by Longuet-Higgins and Cokelet [38], has been made available to the author. The case
in Fig. 1, of two linear waves of 2:1 wavelength ratio, is studied. For initial conditions, the program uses
the same zero-pressure initial surface position defined there, together with the velocity potential on this
surface, given by (1.2).

The results are shown at the top of Fig. 11 below, for the cases where the steepness ka of each of the
two waves ranges from 0.15 to 0.23, in steps of 0.01. In each case the wave either remains smooth-crested,
or breaks—there is no mistaking the latter case, because a jet forms, which eventually stops the program
(ideally when it touches the surface of the wave under it, but in practice somewhat before this). For each
run, the wave is only shown once, at the furthest stage into breaking that the program could reach—three
different resolutions (84, 167 and 251 computational points) were used, which gave identical results but
stopped running at slightly different stages into breaking. If the wave did not break, the wave is shown
instead at the stage of maximum crest elevation. Evidently the threshold for wave breaking is ka = 0.19.
The equivalent particle-sheet simulations, in the style of Fig. 1, are shown below this in Fig. 11, where it
can be seen that the threshold for particle escape is ka = 0.17. Evidently particle escape is quite a good
guide to wave breaking, in this case.
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It is also of interest to include in the starting conditions the 2nd order potential from the weakly nonlinear
theory [39]. For the case of the 1st order potential (1.2) it is (assuming k2>k1):

− a1a2ω2e(k2−k1)z sin{(k2 − k1)x − (ω2 − ω1)t}. (4.2)

The fully nonlinear computations of Fig. 11 were therefore repeated with this 2nd order potential (4.2)
included in both the calculation of the initial surface position (to have zero pressure), and in the potential
on it. The results are shown in Fig. 12 above; it can be seen that the threshold for wave breaking only
changes slightly to ka = 0.18. It is also possible to include the 2nd order potential in the particle-sheet sim-
ulations, although this becomes increasingly questionable after a particle escape in the 1st order potential
(i.e., in the equivalent case at the bottom of Fig. 11), because then it is arguable that Stokes’ expansion
may have diverged, as described in Sect. 1. They are nevertheless included (both in the calculation of the
initial surface position, and in the velocity field thereafter) at the bottom of Fig. 12. It can be seen that the
threshold for particle escape is delayed from ka = 0.17 in Fig. 11, to ka = 0.21 in Fig. 12.
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Table 2 The maximum crest elevation in the exact computations of Figs. 11 and 12, compared with the maximum crest
elevation from classical 2nd order theory (4.4)

ka Classical 2nd
order theory
(Eq. 4.4)

Exact computations

1st order starting conditions (Fig. 11) 2nd order starting conditions (Fig. 12)

0.15 0.253 0.261 0.271
0.16 0.272 0.284 0.297
0.17 0.291 0.308 0.331
0.18 0.311 0.336 0.375
0.19 0.330 0.377 0.428
0.20 0.350 0.421 0.439
0.21 0.370 0.439 0.450
0.22 0.391 0.458 0.473
0.23 0.411 0.475 0.484

Figures 11 and 12 only show the exactly computed waves at the end of the simulations. Since the crest
elevation drops slightly as breaking progresses, we record also the maximum crest elevation reached in the
computations, because of its relevance to the previous section. See Table 2 above.

Also shown in the table are the maximum crest elevations according to classical 2nd order theory,
according to which the surface elevation is (see [39], but here we assume as in (4.2) that k2 > k1):

1
2 k1a2

1 cos 2(k1x − ω1t) + 1
2 k2a2

2 cos 2(k2x − ω2t) + 1
2 a1a2(k1 + k2) cos{(k1 + k2)x − (ω1 + ω2)t}

+ 1
2 a1a2(k1 − k2) cos{(k1 − k2)x − (ω1 − ω2)t}. (4.3)

Since in our case k1 = 1 and k2 = 2, and k1a1 = k2a2= ka, the crest elevation when the two crests coincide
(x = t =0) is:

ka + ka
2

+ (ka)2

2
+ (ka)2

4
+ 3(ka)2

4
− (ka)2

4
= 3ka

2
+ 5(ka)2

4
. (4.4)

There is evidently a significant increase in crest elevation, when the wave breaks, compared with clas-
sical 2nd order theory. At ka = 0.20, for example, the crest elevation reaches 0.439 with the 2nd order
starting conditions, compared with 0.350 from classical 2nd order theory. This is a 25% increase, which is
significantly greater than the 10% increase reported in [14] with weakly nonlinear theory, and supports the
view expressed in Sect. 3 that rogue waves may be largely a strongly nonlinear phenomenon.

Returning to the correlation between particle escape and wave breaking, the case of a very low frequency
ratio can be dealt with without the need for computations like those in Figs. 11 and 12. This is because
the long-wave groups involved are close to regular waves, where the thresholds for particle escape can be
found from the streamlines in Figs. 2. When the wave steepness is sufficient for the zero-pressure surface
to reach the first diverging streamline, the particles will begin to escape. This point is easily found – it is a
1st order wave steepness ka of 0.382. This is remarkably close to the experimentally observed threshold of
breaking of long wave groups, which is about ka = 0.38 [40, p. 115].

No doubt this agreement is fortuitously close, but it is remarkable that the divergence of the stream-
lines in Fig. 2, although it has long been recognised, has hitherto been considered to have no physical
significance, see [41,42] and also [32, written discussion by Tuck]. The closest suggestion in the literature,
known to the author, is that when a Gerstner wave [43, art. 251] is modified to include a sloping sea bed,
its jet-like limiting form should be taken as the shape of a breaker [44]. This is a fundamentally differ-
ent phenomenon, because in a Gerstner wave the particles never escape, but move in closed orbits. The
suggestion that the Gerstner jet corresponds to breaking, which was actually originally made by Gerstner
himself (in his original paper [45], he says his jet occurs when das Wasser an den Gipfeln der Wellen sich
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kräuselt
†
), has not been repeated in the more recent applications of the Gerstner idea (e.g. [46]), perhaps

because the flow in the jet is so rotational; at the tip the vorticity is infinite, and thus the flow is completely
unphysical. Also the Gerstner jet occurs at a height-length ratio of π−1 = 0.318, which is well above the
experimentally observed breaking threshold ka = 0.38 for long wave groups cited above, which corresponds
to a height–length ratio of about 0.38/π = 0.12.

We turn now to the correlation between particle escape and wave breaking in the case of two waves
of high frequency ratio. Whatever the amplitude of the two waves, it is clear that a particle escape can be
produced by sufficiently increasing the wavenumber k2 of the short wave, because of the exponential term
ekz in (1.2). For the same reason, it has long been recognised in the engineering literature that classical
linear wave theory is inadequate, and a rough-and-ready approximation (“Wheeler stretching” [47]) is
used to suppress the exponential term. The phenomenon is also recognised in the mathematical literature,
where at high ratios there are “short-wave riding on long-wave” models [48–50] in which the short-wave
is transported onto the surface of the long one, and responds to the “effective g” on its surface. Formally
[51], if we write the 2nd order potential (4.2) in the form

− a1a2ω2e(k2−k1)z{sin(k2x − ω2t) cos(k1x − ω1t) − cos(k2x − ω2t) sin(k1x − ω1t)}, (4.5)

we see that the first term in the brackets {} produces no phase change in the 1st order short-wave potential,
and the second term produces a phase change which can never exceed 90 degrees. But the changes in
wavelength of the short wave, as it responds to the changes in “effective g” on the surface of the long wave,
will produce a cumulative phase change of the short wave (over a quarter-wavelength of the long wave,
say), which can be made as large as we please, by making the wavelength ratio k2/k1 sufficiently large, and
also keeping sufficient steepness k1a1in the long wave. We can conclude [51] that Stokes’ expansion must
diverge, and thus the weakly nonlinear theory must break down.

It is not clear, however, whether the waves will break. Presumably, if the wavelength ratio is sufficiently
large, but the steepness of the two waves is sufficiently small, there can be a particle escape (and an
associated breakdown of the weakly nonlinear theory) but no wave breaking. It is therefore necessary
to truncate the wave spectrum to exclude these cases, and more generally to exclude cases of small-scale
breaking which are not of engineering importance. The situation is therefore exactly the same as with
the acceleration-threshold breaking criterion of Table 1, except that a particle-escape criterion is at least
sensitive to water depth in a credible way, as shown in Fig. 7.

Accordingly, we will truncate the hurricane spectra in Fig. 10 to various degrees, and investigate the
frequency of particle escape in each case, just as in Table 1. The truncation can be achieved by working
inwards from both zero and infinite frequency, until a certain threshold spectral density is reached. Only
the main part of the spectrum, within these low and high-frequency limits, is then considered, as in Table 1.
This was done for a range of threshold spectral densities, to obtain a range of truncated spectra from each
of the three original spectra in Fig. 10. The maximum-to-minimum frequency ratio R of these truncated
spectra had various values, between 1.5 and 2.0. This captured approximately 85–90% of the significant
waveheight, and thus significant steepness (no scaling of the truncated spectrum to restore the significant
waveheight was performed, either here or in Table 1). The exact figures are given in Fig. 13 below.

For each of these truncated spectra, a batch of 300 simulations totalling 1,000 h was then performed, as
in the previous section. In these steeper seastates, a single batch of 300 simulations gave sufficient particle
escapers to be statistically significant—it was not necessary to perform 7,500 simulations. It was likewise
sufficient this time to take the number N of spectral lines as 50—some runs were repeated with N = 100,
without giving significantly different results. The results for the LILI spectra are shown in Fig. 13 below, in
same Q–Q format as the previous section (except that there are now 300 runs per batch, rather than 7,500).

As in Fig. 7, it can be seen that the Q–Q plots are close to straight lines, confirming that the escapes are
occurring at random. A least-squares fit of the slope of the plots was accordingly made, to obtain the mean

†
When the water surface gets wrinkled at the wave crests.



J Eng Math (2007) 58:229–249 245

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91

-log{1-(n-0.5)/300}

W
ai

ti
n

g
 t

im
e 

(h
o

u
rs

)

R = 1.89

R = 1.78

R = 1.68

R = 1.63

R = 1.59

R = 1.56

R = 1.53

Fig. 13 Hurricane LILI. Waiting-times until a particle “escape”, from batches of 300 linear simulations, plotted against
− log{1−(n − 0.5)/300}, where n is the position out of 300 when sorted into ascending order. The parameter R is ratio of the
maximum and minimum truncation frequencies applied to the LILI wave spectrum of Fig. 10

1

10

100

0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04

Significant steepness

W
ai

ti
n

g
 t

im
e 

(h
rs

)

IVAN

LILI

CAMILLE
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the original spectra shown in Fig. 10, which were 0.037, 0.043 and 0.041, respectively

waiting times T. These are plotted, for all three hurricanes, in Fig. 14 below. It may be seen that the highest
truncation ratio R, close to 2.0, gives the best fit to the CAMILLE observation of Fig. 9, which is the worst
case of large scale breaking in about 3 h of data. This frequency ratio of 2.0 is also the same as that used in
the Draupner case in the previous section. Figure 14 also establishes that particle escape is controlled by
the single parameter significant steepness. We may conclude that a large breaking wave is to be expected
about once per hour at the LILI significant steepness of 0.043, and about once per 100 hours at the IVAN
significant steepness of 0.037.
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This finding calls into question the mathematical models of large waves, such as those in the widely
used design code [52] for fixed steel offshore structures with small-diameter members. It is remarkable
that none of the wave models in this code allow for breaking. As already noted after Fig. 9, large breaking
waves have much higher particle accelerations than non-breaking waves. Computations have shown [53]
that where the water surface is vertical, the acceleration is typically 5g rather than at most 0.5g. This will
produce, via the wave loading formulae for small-diameter members (which strictly speaking should be
extended beyond the usual Morison form in these extreme condition [54,55]) a much higher local wave
load there; see e.g. [56]. It is also known that when the wave forces on fixed steel structures are measured
by means of strain gauges, some waves appear to be more forceful than others, when compared with the
predictions from non-breaking wave models [57].

Despite this evidence, [52] specifies that the water surface should be defined in the classical way as the
sum of sinusoidal components (i.e., (1.1) with many frequency components), which clearly prevents any
breaking. And that the velocity underneath this surface should be defined [52, par 2.3.1.c(2)] by modifying
the classical velocity field (3.1) by means of “Wheeler stretching” [47] or a similar method. Much more
sophisticated non-breaking wave models have been proposed, for example [58] is a method which does
not allow a regular wave to break until ka = 1 [58, after Fig. 3]. It will thus give a non-breaking model of
a breaking wave. It has also been stated [51, Sect. 6(i)] that Stokes’ expansion remains valid in the case of
two combined waves of length ratio up to 2:1, provided it is valid for each wave individually. This is clearly
incorrect (the exact computations in Figs. 11 and 12 show that two waves of length ratio 2:1 will, when
combined, break well before either would individually), and will lead the methods of [51] to produce a
non-breaking model of a breaking wave.

It is hoped that the evidence of the breakdown of Stokes expansion, provided by particle escape, will
encourage the use of more rigorous and realistic wave models. A modest step in that direction would be to
include at least sharp-crested waves in the design code [52] cited above. A good model of a sharp-crested
wave [59] has long been available, and is programmed into some commercial software. An alternative
version, which is less elegant but conceptually simpler and even more accurate, has also recently been
devised [60].

5 Conclusions

Recent evidence from field and laboratory data, and from computations, suggests that the weakly non-
linear theory of water waves and wave-structure interaction (Stokes’ expansion) may be less important
than previously thought. In linear theory, the particles occasionally escape to infinity in finite time, and this
appears to be associated with strongly nonlinear behaviour, in which the surface can likewise be thrown
upwards.

The explanation for the “ringing” of large-diameter vertical cylindrical members of offshore struc-
tures was once sought in weakly nonlinear (3rd order) theory, but it is now definitely known to be a
strongly nonlinear phenomenon. The water surface can be seen in high-speed photographs to behave in
a violent fashion, as predicted to a remarkable degree by the movement of surface particles in linear
theory.

The explanation for rogue waves, too, has long been sought in weakly nonlinear theory (nonlinear
focusing by 3rd order amplitude dispersion), but the latest computations based on that approach show that
the effect is of negligible statistical significance, when set against the field observations (especially those
in water too shallow to allow the Benjamin–Feir instability, which is the benchmark amplitude dispersion
effect). Also laboratory experiments with focused waves show the crest elevation continuing to grow after
all components have come into phase, which is inconsistent with weakly nonlinear theory, but is exactly
the type of strongly nonlinear behaviour suggested by particle escape.
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Computations are presented to establish the frequency of particle escape in the conditions of the well-
known Draupner rogue wave, and the frequency (which is increased by the relatively shallow water at
Draupner) is found to be consistent with the field observation. The implication of rogue waves being a
strongly nonlinear phenomenon of this type, is that they can be investigated by relatively simple labora-
tory experiments, because there is no need to allow the waves to evolve over great distances. Another
important implication is that rogue waves may typically be associated with jets thrown upward from the
wave crests. These have recently been seen in laboratory experiments in focused waves, and are readily
observed at sea, in locally extreme conditions. This offers an explanation for the elusive nature of rogue
wave measurements, which are often discarded as “spurious crests due to spray”.

Finally, wave breaking itself has long been explained by weakly nonlinear theory, as an unstable per-
turbation of regular waves. However, the latest theoretical investigations and computations show that the
most relevant instability only produces breaking if the crest is close to the 120-degree limiting form, and
then only on a small scale. It is known that in large-scale wave breaking the wave by-passes the 120-degree
limiting form; it is this type of large-scale wave breaking which appears to be better explained by particle
escape.

Exact fully nonlinear computations are presented of the simplest relevant case, which is two interacting
waves of 2:1 length ratio, and the same steepness. The threshold steepness for wave breaking is found
to correspond quite well with the threshold steepness for particle escape. For longer wave groups, the
experimentally observed threshold steepness for wave breaking also agrees well with the threshold steep-
ness for particle escape. Computations are accordingly presented of the frequency of particle escape in the
measured wave spectra of two recent hurricanes, LILI and IVAN, and one historical hurricane, CAMILLE,
in which there is a measurement of large-scale breaking. By comparing the results, it is concluded that
large-scale wave breaking will have occurred approximately once every hour, and once every 100 h, in
LILI and IVAN, respectively.

These findings call into question the design codes for fixed offshore structures, which rely entirely on
weakly nonlinear theory; wave breaking is excluded. A revision to these codes would therefore appear
to be timely. It could be based on simple models of sharp-crested waves which are already available in
commercial software.
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Appendix: Details of particle escape

Particles on the diverging streamlines of Fig. 2 move upwards increasingly rapidly. We can obtain the
vertical velocity from (1.2), and so find their vertical position z, for large z, by solving the differential
equation:

dz
dt

= aωekz. (A.1)

This equation integrates exactly (albeit that it is only valid for large z) to:

z = −k−1 log{1 − kaω(t − t0)}, (A.2)

where z= 0 at t = t0. This expression becomes infinite when kaω(t − t0) reaches 1, in other words at the
finite time:

t = t0 + (kaω)−1. (A.3)

This event is known as a “blow-up” and is well-known in other contexts, for example combustion; see e.g.
[61], and optics and plasma waves; see e.g. [62].
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